
Extracting Traffic Smoothing Controllers Directly
From Driving Data using Offline RL

Thibaud Ardoin
Department of Computer Science

ENS Paris-Saclay
91190 Gif-sur-Yvette, France

thibaud.ardoin@ens-paris-saclay.fr

Eugene Vinitsky
UC Berkeley

Berkeley, CA 94704
vinitsky.eugene@gmail.com

Alexandre Bayen
UC Berkeley

Berkeley, CA 94704
bayen@berkeley.edu

Abstract

Recent work has demonstrated that autonomous vehicles (AVs) can be used to
smooth emergent traffic shock-waves and improve the resultant energy efficiency
of traffic. Building the controllers for these vehicles usually involves building a
simulator as an intermediate step; this involves careful estimation of human driving
dynamics and network calibration which can be challenging at scale. We investigate
whether it is possible to learn optimal traffic controllers by using the abundance of
available human driving data. We use Offline Reinforcement Learning to extract
controllers from "human" driving data collected from simulator runs. In contrast to
expectations that data from an expert or random policy is needed, we demonstrate
that assuming slightly noisy models of human driving is sufficient to generate data
that covers the state space enough to extract effective controllers. We compare
with a hand-designed linear controller and show that our controller significantly
outperforms it. This suggests the possibility of directly extracting traffic smoothing
policies from abundant driver data collected from deployed AVs.

1 Introduction

Due to fundamental limitations in reaction time and sensing capabilities, human driving is inefficient
and below theoretical upper limits on throughput and energy efficiency of highway traffic. In
particular, [13] experimentally demonstrated that even in the absence of perturbations, instabilities
in human driving lead to the formation of shock-waves that both slow overall traffic and consume a
significant amount of energy. In a seminal work, [12] showed that dissipating these waves did not
require a significant number of vehicles (they used one AV amongst 21 human drivers) and showed
in a field demonstration that a simple PID controller could be used to totally eliminate the waves.
The low penetration rate suggested that significant benefits from autonomy could be achieved at
≈ 5% penetration rates of level-2 vehicles (autonomous distance keeping and lane changing). This
penetration rate is low enough that it is likely to be achieved in the next few years if it is not already
achieved.

However, the results in [12] are in relatively simple settings: all the vehicles are driving around a
circular track. Scaling energy efficient, traffic-smoothing control to the full complexity of highway
traffic, with its multi-agent, hybrid dynamics, is an open challenge. Generally, two key approaches to

Machine Learning for Autonomous Driving Workshop at the 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada.

tackling the problem of scale are either (1) designing controllers in simplified settings with theoretical
guarantees and then testing in the simulation if the properties hold in complex networks as in [17] or
(2) using optimization based approaches such as Reinforcement Learning to directly design controllers
in the full complexity scenario. Both of these scenarios require accurate human driving models as
well as a calibrated simulation to test in. However, the process of building these simulations and
calibrating them to data can take months of effort and at large scale these simulations can often be
too slow to efficiently sample from for optimization.

As an alternative, we can use Offline Reinforcement Learning to extract a traffic smoothing controller
directly from data without needing to build or run a simulation as an intermediary step. There is
now a wide variety of camera data of human driving available, both overhead camera data [1, 8] and
dash-cam/radar/LIDAR data [16, 2, 14]. This abundance of data has sufficient information to relabel
with energy consumption as a reward and use to perform Offline RL. Since the data comes directly
from human drivers rather than potentially miscalibrated simulators, it is possible that the resultant
controllers would be significantly likelier to transfer to real highways.

However, Offline RL often performs best when the data is collected from trajectories provided by
a controller that guarantees sufficient coverage of the state and action space. In prior work when
examining Offline RL for traffic smoothing control, [3] acquired data by having one of the vehicles
take either random actions or actions drawn from an expert policy trained via RL. Without sufficient
coverage provided by either a random or expert policy, the output controller can be overoptimistic and
has ill-defined behavior outside of the data distribution. While human data might contain examples of
humans generating waves, it is unlikely that it contains examples of humans actively smoothing the
waves. While there may be small sequences of steps where a human driver partially smooths a wave
by coincidence, this data is likely infrequent and hence it is unclear if traffic smoothing behavior
can be extracted from human data alone. As a first step at determining whether traffic smoothing
controllers can be extracted from human data given these limitations, we examine whether they can
be extracted from simulated human data. By controlling the level of noise in the simulated driving
data, we can establish lower bounds on how much variability would be needed in a human driving
data-set.

Our contributions are as follows:

• We demonstrate that at extremely low levels of noise we can extract wave smoothing
controllers.

• We investigate how the level of noise affects the training of the resultant controller.
• We demonstrate that the extracted controller outperforms baseline hand-designed controllers.

Sec.2 Provides background on the offline RL method used, our simulator, and control of traffic
smoothing waves. Sec.3 describes our MDP and the results of our experiments. Sec.4 offers some
conclusions and ideas for how offline RL can be used to scale traffic smoothing control.

2 Background

2.1 Wave Formation and Control

In this work we use Flow [15], an interface that connects RL libraries to traffic micro-simulators
(in this case SUMO [10]), to study the scenario shown in Fig. 1 where 22 vehicles are driving
around a circular track. This is a simulated recreation of both the experiment that demonstrated the
spontaneous formation of waves [13] and the experiment demonstrating that AVs could be used to
smooth traffic [12]. 22 vehicles are placed on the ring and drive according to the Intelligent Driver
Model [7], a popular model of human driving behavior in highway settings. In the controlled setting,
we will replace one of these vehicles with an autonomous vehicle and see if we can remove the
spontaneously forming waves that occur in the absence of control. For a given vehicle, the model is a
function of the vehicle’s speed, the distance to its leader vehicle, and the speed of the leader vehicle.
To introduce stochasticity we also add a small amount of Gaussian noise so that the dynamics evolve
as

xt+1 = xt + v∆t (1)

vt+1 = vt +
(
fIDM(vt, v

lead
t , xlead

t+1 − xt+1) +
√

∆t N (0, σ)
)

∆t (2)

2

(a) Formation of traffic wave with 22 human
drivers.

(b) A single AV (red) inserted into the ring to
smooth the wave.

Figure 1

where fIDM is the driver model, x and v are position variables, and ∆t is the simulator time-step. We
are using first-order Euler integration to evolve the dynamics.

In the absence of noise the system is stable, but in the presence of small amounts of noise waves
gradually begin to form as can be seen in Fig. 2 where the system starts in a steady state but gradually
begins to evolve waves (the slanted red curves). Prior work has focused on removing these waves

Figure 2: Formation of waves as 22 human drivers drive on the ring. Each line is the trajectory of a
human driver and the red portions correspond to portions where vehicles have come to a near full
stop. The alternating patterns of red and green indicate the formation of waves.

by using linear controllers [12, 17] or RL [15]. As our baseline, we will use the Follower-Stopper
controller from [12], which uses feedback to regulate the speed of the controlled vehicle around a
desired velocity that is pre-specified. As a basic intuition for how it works, by traveling at a slightly
lower speed the controller opens up a gap to the vehicle in front of it which gives it time to brake
smoothly as a wave approaches. The follower-stopper computes its acceleration using the following

3

equation:

vcmd =

0 if ∆x ≤ ∆x1

v ∆x−∆x1

∆x2−∆x1
if ∆x1 < ∆x ≤ ∆x2

v + (vdes − v) ∆x−∆x3

∆x3−∆x2
if ∆x2 < ∆x ≤ ∆x3

vdes if x3 < ∆x

(3)

u = min
(

max
(
umin,

vcmd − v
∆t

)
, umax

)
(4)

where ∆x is the distance to the lead vehicle, ∆x1, ∆x2, ∆x3 are specified values dividing the
distance into an unsafe region, a region of linear control, a safe region where the maximum speed
is achievable, and u is the commanded acceleration. For more details see [12] . We note that
since this controller is designed to ensure stability rather than optimize a given reward function, it
is not the optimal controller for the reward function we use in Sec. 3.1, however, we will perform a
hyperparameter sweep of vdes to tune it as much as possible.

2.2 Offline Reinforcement Learning

Offline Reinforcement learning is essentially off-policy RL but with the constraint of a static data-set
D. This data is a set of transition (st, at, st+1, rt) gathered using a certain behavior policy πb that
can technically be from any source but usually is a random or expert policy. The particular variant of
RL we will use here, BEAR [9], is an actor-critic algorithm built upon TD3 [4] / SAC [6] that seek
to learn a critic Q(s, a) and a policy πθ that maps the state into an action that maximizes the critic
values. The key insight of BEAR is that actions that maximize the estimated Q function may be well
outside the support of the training distribution. In turn, this causes overconfident estimates of the
value of actions that are not even contained in the dataset.

BEAR resolves this challenge by constraining the policy to match the set of policies that could
plausibly have generated the dataset. It does so using a sampled version of Maximum Mean
Discrepancy [5] with a Gaussian kernel k (Eq. 2.2)

MMD2 ({x1, . . . , xn}, {y1, . . . , ym}) =
1

n2

∑
i,i′

k (xi, x
′
i)−

2

nm

∑
i,j

k (xi, yj)+
1

m2

∑
j,j′

k
(
yj , y

′
j

)
It uses the estimated value of this discrepancy between the policy and the data as a constraint and
updates the policy by maximizing a set of K Q functions; these K Q functions are used to induce
conservativeness via ensembling. The resultant optimization problem is

πθ = Es∼DEa∼π(·|s)

[
min

j=1,...,K
Qj(s, a)

]
s.t.Es∼D

[
MMD2 (D(s), π(·|s))

]
≤ ε (5)

This optimization problem is then tackling using dual descent and the Q function updated using the
standard approximation to Bellman’s equations. For more details please see [9].

3 Experiments and Results

Here we briefly define the Partially Observed Markov Decision Process (POMDP) for our problem
and the reward function of use. We then provide our results for the performance of the trained
controllers and discuss the interaction between the controller optimality and the level of noise in the
data collection process.

3.1 Defining the Markov Decision Process

The key ingredient in our definition of the MDP is a reward function that aligns with notions of wave
smoothing. Since the speed of the system is maximized when the waves are gone, we simply use
the average speed of the ring as the reward function base. Denoting st as the state at time t, ut as
the action at time t, rt as the reward at time t, and vit as the speed of vehicle i at time t, our reward

4

function is:

r(st, ut) = 4 ∗

(
1

N

22∑
i=1

vit − |ut|

)
(6)

where we have added an absolute penalty on the actions as a regularizer; this reward is taken from [15].
Note that we are using the average speed of all vehicles in the network as the reward function; this
mean value would likely not be accessible in camera data. However, since the waves are periodic, the
mean value simply leads to a smoothed speed trajectory due to the symmetry of the ring and could be
replaced with the speed of only the controlled vehicles without any likely impact on the results. While
this is an assumption, we leave a sparser reward function to future work. The remaining components
of the MDP are as follows:

• The state space is st =
[
vt, v

lead
t , xlead

t − xt
]

where vt is the vehicle speed, vlead
t is the leader

speed, and the third term is the distance to the lead vehicle.
• Transition dynamics: all the human vehicles are governed by Eq. 2 whereas the AV evolves

as a double integrator.
• Action space: the actions are accelerations bounded between [−1, 1].
• Discount factor: γ = 0.99.

3.2 Experimental protocol

We generate datasets of one million input transitions each of which is sampled from our simulated
human drivers with different values of σ i.e. Gaussian noise with varying std. deviation. Here we are
assuming that the different noise values approximately represent different amounts of variation in
human driving patterns. We run each simulation and collect 1000 steps per simulation run with a
simulation step ∆t = 0.5. As an additional source of variability, at each rollout we uniformly sample
a ring length from [220, 270] meters, this varies the density of the vehicles on the ring which in turn
changes the optimal speed for the ring. This is viewed as drawing samples from different levels of
congestion.

For each of these datasets, we run BEAR using the hyperparameters in Table. 5a. During training we
periodically evaluate the controller on a ring of size 230 meters to compute the expected reward of
our controllers; noise is kept on at the same level as it is during training. Note that this evaluation
procedure would technically not be available given a real world data source without constructing
a simulation to evaluate on. We leave the question of how to select a good controller without an
evaluation environment for future work.

3.3 Experimental results

In figure 3 we plot the mean evaluation reward over 5 training runs with noise values in σ ∈
{0.05, 0.1, 0.2, 0.5, 1}. On the plot we also present (black dotted line) the maximum reward of
the follower-stopper described in Sec. 2.1 with vdes = 3. While the equilibrium speed on the ring
without noise is ≈ 5 meters

second , we empirically determined via grid search that vdes = 3 gave the optimal
reward for the follower-stopper controller for our reward function. Note that this value is computed
in the absence of noise and is essentially an upper-bound on follower-stopper performance. The
follower-stopper is not designed to optimize the reward function so it is not expected to achieve great
performance, but it does serve as a lower bound that we can compare against.

The reward evolution shows that data generated by IDM with σ = 0.05 is not capable of learning;
this is consistent with the results of [3] which found that data extracted purely from human driving
models without any noise did not manage to learn. As the noise increases to σ = 0.1 we start to get
an increasing reward and our reward is maximized at values of σ = 0.5. Note that if the noise is
too high or too low (σ = 0.1 and σ = 1.0 respectively) the reward curve starts to go unstable above
some epoch. We see that σ = 0.1 is approximately the level at which getting a reasonable controller
becomes possible. This gives us an estimate of how noisy a driving data set would need to be to
extract traffic smoothing controllers.

We visualize the system dynamics under our respective controllers in Fig. 4. On the left, we see the
formation of waves without control, and on the right the smoothing of waves when control is applied.
Excitingly, although this behavior is never observed in the training data when control is turned on the

5

Figure 3: Evolution of the mean reward across 4 runs for each noise value. The dotted black line
represents the reward achieved by the Follower Stopper with vdes = 3.0.

vehicle comes to a full stop and gradually accelerates to bring all the vehicles up to a stable speed.
Waves are sharply reduced with control on but cannot be completely eliminated due to the significant
amount of noise in the system.

(a) σ = 0.3, Human Driven (b) σ = 0.3, Autonomous

Figure 4: Time-space diagram of the system dynamics with a single controlled AV. On the left, the
system is unstable without control while the waves are significantly smoothed with control on the
right. Waves cannot be completely reduced due to the inherent noise in the system.

4 Discussion and Future Work

In this work, we provide an affirmative answer to the question of whether traffic smoothing controllers
can be extracted from human data without a controlled vehicle to generate the data. While we
perform our tests entirely in simulation, the low level of noise above which we can extract policies is
a promising sign for our ability to extract similar controllers from human driving data. Attempting to
do this using publicly available datasets is a direction that would be interesting to pursue.

A key challenge that we were not able to resolve in this work is how to evaluate our controllers
without using a simulation. Since the goal is to extract a controller without building a simulation in
between, it is necessary to evaluate the controller using only the dataset. In future work, we would
like to investigate using train-validation-test splits as is often done in supervised learning and see if
this is sufficient for picking good controllers.

Furthermore, to scale up to complex networks with many controlled agents, it is necessary to extend
these offline RL techniques to the multi-agent setting. Perhaps at low penetration rates of autonomous

6

vehicles, each driving agent is sufficiently isolated from the other agents that it can be treated
effectively as a single agent problem. However, this is unlikely to work for all driving all problems
and it will likely be necessary to treat these as multi-agent problems. In this vein, it would be
interesting to examine whether offline RL works in the "train centralized, act decentralized" paradigm
used to construct multiagent algorithms such as MADDPG [11].

Acknowledgments and Disclosure of Funding

The authors would like to thank Justin Fu for his invaluable discussions around offline RL algorithms
as well as the release of the D4RL library. Eugene Vinitsky is a recipient of an NSF Graduate Research
Fellowship and funded by the National Science Foundation under Grant Number CNS-1837244.
Computational resources for this work were provided by an AWS Machine Learning Research grant.
This material is also based upon work supported by the U.S. Department of Energy’s Office of Energy
Efficiency and Renewable Energy (EERE) award number CID DE-EE0008872. The views expressed
herein do not necessarily represent the views of the U.S. Department of Energy or the United States
Government.

References
[1] V. Alexiadis, J. Colyar, J. Halkias, R. Hranac, and G. McHale. The next generation simulation

program. Institute of Transportation Engineers. ITE Journal, 74(8):22, 2004.

[2] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,
and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11621–11631,
2020.

[3] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning. ArXiv, abs/2004.07219, 2020.

[4] S. Fujimoto, H. Van Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. arXiv preprint arXiv:1802.09477, 2018.

[5] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample
test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

[6] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

[7] A. Kesting, M. Treiber, and D. Helbing. Enhanced intelligent driver model to access the impact
of driving strategies on traffic capacity. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 368(1928):4585–4605, 2010.

[8] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein. The highd dataset: A drone dataset of
naturalistic vehicle trajectories on german highways for validation of highly automated driving
systems. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC),
pages 2118–2125. IEEE, 2018.

[9] A. Kumar, J. Fu, G. Tucker, and S. Levine. Stabilizing off-policy q-learning via bootstrapping
error reduction. CoRR, abs/1906.00949, 2019.

[10] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich, L. Lücken,
J. Rummel, P. Wagner, and E. Wießner. Microscopic traffic simulation using sumo. In The 21st
IEEE International Conference on Intelligent Transportation Systems. IEEE, 2018.

[11] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch. Multi-agent actor-critic
for mixed cooperative-competitive environments. In Advances in neural information processing
systems, pages 6379–6390, 2017.

[12] R. E. Stern, S. Cui, M. L. Delle Monache, R. Bhadani, M. Bunting, M. Churchill, N. Hamilton,
H. Pohlmann, F. Wu, B. Piccoli, et al. Dissipation of stop-and-go waves via control of au-
tonomous vehicles: Field experiments. Transportation Research Part C: Emerging Technologies,
89:205–221, 2018.

7

[13] Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-i. Tadaki,
and S. Yukawa. Traffic jams without bottlenecks—experimental evidence for the physical
mechanism of the formation of a jam. New journal of physics, 10(3):033001, 2008.

[14] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou, Y. Chai,
B. Caine, et al. Scalability in perception for autonomous driving: Waymo open dataset. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2446–2454, 2020.

[15] C. Wu, A. Kreidieh, K. Parvate, E. Vinitsky, and A. M. Bayen. Flow: Architecture and
benchmarking for reinforcement learning in traffic control. arXiv preprint arXiv:1710.05465,
page 10, 2017.

[16] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann, J. Kummerle, H. Konigshof,
C. Stiller, A. de La Fortelle, et al. Interaction dataset: An international, adversarial and
cooperative motion dataset in interactive driving scenarios with semantic maps. arXiv preprint
arXiv:1910.03088, 2019.

[17] Y. Zheng, J. Wang, and K. Li. Smoothing traffic flow via control of autonomous vehicles. IEEE
Internet of Things Journal, 7(5):3882–3896, 2020.

8

A Hyperparameters

num eval steps per epoch 1000
num trains per train loop 1000
num expl steps per train loop 1000
min num steps before training 1000
max path length 1000
batch size 256
layer size 256
replay buffer size 2e6
discount 0.99
kernel choice "gaussian"
mmd sigma 50
policy lr 1e-4
qf lr 3e-4
policy update style "0"
reward scale 1
soft target tau 0.005
target mmd thresh 0.05
target update period 1

(a) Hyper-parameters used for the BEAR algorithm
training in Fig. 3

9

	Introduction
	Background
	Wave Formation and Control
	Offline Reinforcement Learning

	Experiments and Results
	Defining the Markov Decision Process
	Experimental protocol
	Experimental results

	Discussion and Future Work
	Hyperparameters

